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Potential Solution of a Homogeneous Strip-Line
of Finite Width*

W. H. HAYT, JR.}

Summary-—~The exact potential solution for a zero-thickness
strip centered between two ground planes of finite width is outlined.
For unit separation of the ground planes, the solution is applied to
obtain curves of capacitance per unit length for several representa-
tive ground plane widths as a function of strip width. The results are
valid for all strip widths, including the case in which the strip is
wider than the ground planes. The validity of assuming infinite
ground plane width is investigated and it is found that such an as-
sumption leads to little error providing the ratio of ground plane
width to separation is at least 2.5, and also providing the difference
between ground plane and strip width is at least one-half of the
ground plane separation.

INTRODUCTION

NCLUDED in the several varieties of microstrip
J:[ transmission lines is the strip between two parallel
ground planes, commonly called strip-line.!=® It is
usually sufficient to consider the width of the ground
planes to be infinite, for in most practical cases they are
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Fig. 1-—Strip-line composed of zero-thickness strip centered between
two parallel zero-thickness ground planes of finite width.

carefully chosen to be sufficiently wide to inhibit radia-
tion leakage and mutual coupling between adjacent
lines. It is the purpose of this article to investigate the
validity of this infinite width assumption by obtaining
the exact solution for the strip-line shown in Fig. 1. The
strip and both ground planes are of zero thickness.

TaueE CONFORMAL TRANSFORMATION

Fig. 2 illustrates the geometry of the line cross section
in the z-plane, and Figs. 3, 4, and 5 (opposite page),
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respectively, show the auxiliary ¢- and 7-planes, and the
W =¢+7) complex potential plane.

The mapping from the z-plane to the ¢-plane satisfies
the differential equation,

dz/dt = Ci(t — D)/ — B)G — OV( — E),

where, B=0, C=1, D=1/k? E=1/k% k<k:<1. Let-
ting f=sin? B, the answer appears in terms of elliptic
integrals of the first and second kinds, as

2C,
B=— [(1 — #/RDF(k, B) — E(k, 8)] + Co.
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Fig. 2—The lower right quadrant of the strip-line in the complex
z-plane. Arrows indicate direction of traverse around boundary of
polygon with shaded interior.

Applying the boundary condition at = —j1/2, =1,
8= /2 gives the value of Cy,

4C, = — jr/[(1 — B/ kDK — E]

and letting = —j1/2, t =1/k2, B =sin ~'1/k, we find
k*/ k> = E/K'

allowing us to write

7

K
s | = BUKORG ) ~ B |
iy
At the edge of the guard plane, s=d—j1/2, t=1/k2,

B=sin 1/k;, which, upon substitution and simplifica-
tion of the resultant elliptic integrals, reduces to

d—EI—[E(k’) E,Fkk’
- . y Y K/ (/ y7):|7
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where, 1
d=— [K'E(F,~) — E'F(F, v)] (5)
sinfy = (1 — E'/K")/F2 "
siny = (1 — E'/K')/k'*
At the edge of the strip, a similar method leads to = /K] ©)
K'[E kit + R
K'TE | b= —~[—,/—F(k’,a>—E(kg 8) + AT N
b=——[7<I—F(k’, 8)—E(k, 5)+k—\/k42+k2/\/kd2—{—1] T LK Eavkgs® + 1.
s d
tan § = 1/ky (8)
where,
, r+1 tag + 1 ©
/ = — o=
tan 8 = 1/ka. (2 4+ a0) — a0 12 4 ay) — 1 )
B (14 ky) — 2 0
ap = =
0 & (10)
/ t- PLANE ky = (B + kd2)/[2 4+ kgt — B2
+2v (1 = (1 + k)] (11)
o [F ks, ) .
=—| —4 1}, sina =7 (12)
2 L K(ky)
A—F — Bl "¢ ~"p ~E TTA bo = K(k2)/K (k) (13)
e T e e

Fig. 3—The auxiliary {-plane. The real axis comprises the boundary
of the polygon described in the z-plane.
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Fig. 4—The auxiliary 7-plane. The real axis is again the boundary of
the polygon but it has been distorted by a bilinear transformation.

The transformation from the {-plane to the 7-plane is
by a bilinear transformation, and the W-plane and 7-
plane are again related by an elliptic integral. The vari-
ous transformations are collected below, along with the
relationships between the dimensional constants and the
several functions.

<

2 =]'—7r— [(1 — E’/K")F(k,B3) — E(k,8)] ¢
{ = sin? 8 (2)
B=+1—F (3)

E = E(F) (4)
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Fig. 5—The complex potential or W-plane. The potential and
stream functions are respectively ¢ and .

The equations relating the dimensions b and d to %
and k; are transcendental and cannot be solved ex-
plicitly.

(CAPACITANCE

The potential difference between strip and ground
planes is seen to be ¢, from Fig. 5 and the total charge
on the strip is 2¢o. We then have

C = 2e0/po = 2eK(ks')/K(ks). (14)

The capacitance per unit length for a strip-line of
given dimensions cannot be found directly because of
the implicit nature of the equations above. Useful
information is, however, presented by a family of curves
which may be computed with little labor. The compu-
tational process begins with a chotce of %, from which
k', K, K', v, E(k', v), and F(k’, ) are derived by (3),
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(4), and (6). The guard plane half-width, d, is then de-
termined by (5). After choosing ka4, then 8, F(%’, 8), and
E(E’, §) are obtained by (8), which now defines b, the
strip half-width, from (7). Using (11), k. is readily
found, from which K(ks), K(k'), and in turn C are
determined.

Fig. 6 shows C, the capacitance of the strip-line per
unit length, as a function of &, the half-width of the
strip, for several values of d, the half-width of the
ground planes. For values of b less than 1.00, the curves
for d having values of 1.250 and infinity agree to about
one-quarter of one per cent. The asymptotic values arise
from exact expressions for the capacitance of parallel
plate condensers.

1t therefore follows that for d>1.25 and d>5+4-0.235,
the exact capacitance and approximate value obtained
by assuming infinite width ground planes agree within
one-quarter of one per cent. A similar statement may
be made for the characteristic impedance, since
Ro=+/moeo/C. The approximation is also valid for
smaller values of d providing a more severe restriction
is placed on the magnitude of &.
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Fig. 6—Capacitance per unit length for a strip-line having a strip
of width 2b centered between two ground planes each of width
2d. The ground planes are separated by unit distance.

Resonant Frequencies of Higher-Order Modes

in Radial Resonators
D. C. STINSON?

Summary—A summary of the relevant work on radial line dis-
continuities and radial line resonators is presented. A step-type dis-
continuity is analyzed using an integral equation formulation and the
results are applied to the calculation of the resonant frequencies of a
radial resonator. This method is verified by experiment and com-
pared with the foreshortened-line approximation and with the meth-
ods of Marcuvitz and Goddard, whose work is satisfactory for the
lowest-order TM mode. However, the present method is the only
one which is equally applicable to the calculation of the resonant
frequencies of TM modes possessing higher-order radial variations.

INTRODUCTION

ADIAL LINE discontinuities have been consid-
R ered quite completely by Whinnery! and by
Bracewell.? The former presents his data in the

form of curves and takes into account such factors as
the proximity of a shorting cylinder near the disconti-
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nuity and the effect of higher-order, nonpropagating
modes. The latter treats only the simple step disconti-
nuity, with the step facing either the inner region or
the outer region, and takes into account radial vari-
ations by a cylindrical spread factor which is given by
families of curves. These two papers form a very com-
plete picture of radial line discontinuities.

Radial resonators have been considered by several
approximate methods,*® but these ignore the disconti-
nuity capacitance. Ordinarily, the discontinuity capaci-
tance is of the same order of magnitude as the capaci-
tance of the capacity loading of the gap, region 4, in
Fig. 1, if one considers the resonator as a foreshortened
radial or coaxial line resonator. A better method con-
siders the modes in both regions and matches them
across the aperture, » =¢. This method has been used
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5 J. C. Slater, “Microwave Electronics,” D. Van Nostrand Co.,
Inc., New York, N. Y., p. 234; 1950.



