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Potential Solution of a Homogeneous Strip~Line

of Finite Widtk

W. H. HAYT, JR.~

exact potential solution for a zero-thickness

strip centered between two ground planes of finite width is outlined.

For unit separation of the ground planes, the solution is applied to

obtain curves of capacitance per unit length for several representa-

tive ground plane widths as a function of strip width. The results are

valid for all strip widths, includlng the case in which the strip is

wider than the ground planes. The validity of assuming infinite

ground plane width is investigated and it is found that such an as-

sumption leads to little error providing the ratio of ground plane

width to separation is at least 2.5, and also providhlg the difference

between ground plane and strip width is at least one-half of the

ground plane separation.

INTRODUCTION

I NCLUDED in the several varieties of microstrip

transmission lines is the strip between two parallel

ground planes, commonly called strip-1 ine.1–3 It is

usually sufficient to consider the width of the ground

planes to be infinite, for in most practical cases they are

1
Fig. l—Strip-line composed of zero-thickness strip centered between

two parallel zero-thickness ground planes of finite width.

carefully chosen to be sufficiently wide to inhibit radia-

tion leakage and mutual coupling between adjacent

lines. It is the purpose of this article to investigate the

validity of this infinite width assumption by obtaining

the exact solution for the strip-line shown in Fig. 1. The

strip and both ground planes are of zero thickness.

THE CONFORMAL TRANSFORMATION

Fig. 2 illustrates the geometry of the line cross section

in the z-plane, and Figs. 3, 4, and 5 (opposite page),
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respectively, show the auxiliary t-and r-planes, and the

W=@ +~+ complex potential plane.

The mapping from the z-plane to the t-plane satisfies

the differential equation,

dzldt = Cl(t – D)/<(t – 1?)(t – c) (t – E).

where, B=O, C=l, D=l/kl~, E=l/kz, k<kl<l. Let-

ting t= sin2 ~, the answer appears in terms of elliptic

integrals of the first and second kinds, as

z = : [(1 – k’/kl2)F(k, p) – E(k, ~)] + C2.
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Fig. 2—The lower :ight quadrant of the strip-line in the complex
z-plane. .krrows mdlcate direction of traverse around boundary of
polygon with shaded interior.

.4pplying the boundary condition at z = –jl/2, t =1,

~ = ~ 7r/2 gives the value of Cl,

4C, = – jk/[(1 – ,&/k,’)K – E]

and letting z= —~1/2, t = l/k2, ~ =sin ‘n/k, we find

k~/kl~ = Et/Kr

allowing us to write

At the edge of the guard plane, z =d –jl/2, t= l/k12,

~ = sin “l/k,, which, upon substitution and simplifica-

tion of the resultant elliptic integrals, reduces to
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where,

sinz ~ = (1
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– E’/K’)/k’z,
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d = ~ [K’E(k’, y) – E’F(k’, y)] (5)
7r

.lt the edge of the strip, a similar method leads to

where,

tan 6 = 1/k~.
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Fig. 3—The auxiliary t-plane. The real axis comprises the boundary
of the polygon described in the z-plane.
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Fig. 4—The auxiliary r-plane. The real axis is again the boundary of
the polygon but it has been distorted by a bilinear trausf ormatiou.

The transformation from the t-plane to the r-plane is

by a bilinear transformation, and the W-plane and r-

plane are again related by an elliptic integral. The vari-

ous transformations w-e collected below, along with the

relationships between the dimensional constants and the

several functions.

z =+ [(1– E’/K’)F(k, $) – -Mk, ml (1)

~’ = ~(k’) E’ = E(k’) (4)

sinz y = (1 – E’/K’)/k’z (6)

K’ E’

[
b = — ~r;F(k’,8)– E(k’,8) + ‘k” + ‘2-” (7)

n- kw’kd’ + L.

tan 8 = l/k~ (8)

7+1 taO + 1
i= —, r= (9)

7(2 +, Uo) — ao t(2 + ao) – 1

k’(1 + k,) – 2
ao =

I–kz
(10)

k2 = (k~ + kd2)/[2 + k’2 – kz

+ 2<(1 – k’)(1 + k$)]

TV = ~ F(k,, a)

[ 1
+1, sina=r

2 K(kJ

@O= K(k,)/K(k,’)

(11)

(12)

(13)

Fig. 5—The complex potential or IV-plane. The potential and
stream functions are respecti~,ely @and $.

The equations relating the dimensions b and d to k

and kd are transcendental and cannot be solved ex-

plicitly.

CAPACITANCE

The potential difference between strip and ground

planes is seen to be @Ofrom Fig. 5 and the total charge

on the strip is 2eo. We then have

C’ = 2co/40 = 2qK(k2’)/K(kz). (14)

The capacitance per unit length for a strip-. [ine of

given dimensions cannot be found directly beta use of

the implicit nature of the equations above. Useful

information is, however, presented by a family of curves

which may be computed with little labor. The compu-

tational process begins with a cho?ce of k, from which

k’, K, K’, ~, E(k’, -y), and F(k’, T) are derived by (3),
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(4), and (6). The guard plane half-width, d, is then de-

termined by (5). After choosing k~, then ~, F(k’, ti), and

.E(k’, 6) are obtained by (8), which now defines b, the

strip half-width, from (7). Using (11), kz is readily

found, from which K(kJ, K(k2’), and in turn C are

determined.

Fig. 6 shows C, the capacitance of the strip-line per

unit length, as a function of b, the half-width of the

strip, for several values of d, the half-width of the

ground planes. For values of b less than 1.00, the curves

for d having values of 1.250 and infinity agree to about

one-quarter of one per cent. The asymptotic values arise

from exact expressions for the capacitance of parallel

plate condensers.

It therefore follows that for d> 1.25 and d > b+ O.25,

the exact capacitance and approximate value obtained

by assuming infinite width ground planes agree within

one-quarter of one per cent. A similar statement may

be made for the characteristic impedance, since

RO= ~~/c. The approximation is also valid for

smaller values of d providing a more severe restriction

is placed on the magnitude of b.
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Fig. 6—Capacitance per unit length for a strip-line having a strip
of width 2b centered between two ground planes each of width
2d. The ground planes are separated by unit distance.

Resonant Frequencies

in Radial

D. C.

of Higher~~Order Modes

Resonators

STINSONt

Summary—A wunmary of the relevant work on radial line dk.-

continuities and radial line resonators is presented. A step-type dis-

continuity is analyzed using an integral equation formulation and the

results are applied to the calculation of the resonant frequencies of a

radial resonator. This method is verified by experiment and com-

pared with the foreshortened-line approximation and with the meth-

ods of Marcuvitz and Goddard, whose work is satisfactory for the

lowest-order TM mode. However, the present method is the only

one which is equsdly applicable to the calculation of the resonant

frequencies of TM modes possessing higher-order radial variations.

INTRODUCTION

~ADIAL LINE discontinuities have been consid-

R
ered quite completely by Whinneryl and by

Bracewell.2 The former presents his data in the

form of curves and takes into account such factors as

the proximity of a shorting cylinder near the disconti-

~ Elect. Res. Lab., Univ. of Cali~., Berkeley, Calif.
‘J. R. Whinnery, “Radial line dlscontinuities, ” Elec. Lab., Gen-

eral Electric Co., D. F. #46293; June 22, 1944.
J. R. Whinnery and D. C. Stinson, “Radial line discontinuities, ”

PROC. IRE, vol. 43, pp. 46-51; January.
2 R. N. Bracewell, “Step discontinuities in disk transmission

lines, ” PROC. IRE, vol. 42, pp. 1543–1548; October, 1954.

nuity and the effect of higher-order, nonpropagating

modes. The latter treats only the simple step disconti-

nuity, with the step facing either the inner region or

the outer region, and takes into account radial vari-

ations by a cylindrical spread factor which is given by

families of curves. These two papers form a very com-

plete picture of radial line discontinuities.

Radial resonators have been considered by several

approximate methods,’–’ but these ignore the disconti-

nuity capacitance. Ordinarily, the discontinuity capaci-

tance is of the same order of magnitude as the capaci-

tance of the capacity loading of the gap, region A, in

Fig. 1, if one considers the resonator as a foreshortened

radial or coaxial line resonator. A better method con-

siders the modes in both regions and matches them

across the aperture, ~ = a. This method has been used

3 F. E. Terman, “Radio Engineers’ Handbook, ” McGra\v-Hill
Book Co., Inc., New York, N. Y., p. 268; 1943.

4 S. Ramo and J. R. Whinnery, “Fields and Waves in Modern
Radio, ” John Wiley and Sons, Inc., New York, N. Y., pp. 404-412;
1944.

5 J. C. Slater, “Microwave Electronics, ” D. Van Nostrand Co.,
Inc., New York, N. ‘Y., p. 234; 1950.


